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Molecular dynamics simulations of ballistic annihilation
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Using event-driven molecular dynamics we study one- and two-dimensional ballistic annihilation. We esti-
mate exponents & and vy, which describe the long-time decay of the number of particles [1(r) ~¢] and of their
typical velocity [v(r)~7"]. To a good accuracy our results confirm the scaling relation &+ y=1. In the two-
dimensional case our results are in good agreement with those obtained from Boltzmann kinetic theory.
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The kinetics of reacting particle systems has recently been
intensively studied. Such systems model a wealth of different
phenomena and in addition offer an important testing ground
for nonequilibrium statistical mechanics. In lattice formula-
tions such systems are much easier to analyze, and in some
cases even exact results could be obtained. More realistic,
off-lattice (ballistic) versions are at the same time much
more difficult to examine, but even here some analytical in-
sight is possible [1].

Despite being one of the simplest reacting particle sys-
tems, single-species ballistic annihilation A+A —0, so far,
has evaded exact solution. Consequently, our understanding
of the kinetics of this process comes mainly from approxi-
mate methods. To describe ballistic annihilation one usually
calculates the density of particles n(r) and their typical ve-
locity v(#) defined using the second moment of the time-
dependent velocity distribution f(v,1):

1
2_
o) = n()

Of particular interest are then the exponents & and y that
describe the asymptotic decay of these quantities:

n(t) ~ ¢ o) ~r. (2)

A simple power counting or scaling arguments can be used to
show that

v f(v,0)dv. (1)

E+y=1. (3)

Although a rigorous justification of this relation is missing,
Piasecki er al. [5] analyzing the Bogoliubov-Born-Green-
Kirkwood-Yvon- (BBGKY-) like hierarchy presented con-
vincing arguments supporting relation (3).

A lot of effort was made to calculate € and 7y [2-7]. How-
ever, it would be desirable to obtain more accurate estima-
tions of these exponents since it could increase our under-
standing in this field. For example, some arguments suggest
[5] that in dimensions d>1 Boltzmann kinetic theory pro-
vides an accurate description of such a process. However, a
direct verification of this hypothesis, using molecular dy-
namics simulations, is not yet fully completed mainly due to
a too small number of particles that were taken into account.
Let us also notice that current estimations of & for d=1, 2,
and 3 are surprisingly close to the result obtained in the
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so-called reaction-controlled limit [£=4d/(4d+1)] [4]. A fur-
ther check whether this exponent could be given as such a
simple fraction would be desirable. Let us notice that a
closely related process—namely, ballistic aggregation—is
solvable in d=1 and some of its exponents are indeed simple
fractions [8].

In the present paper we describe the results of extensive
molecular dynamics simulations of ballistic annihilation in
d=1 and 2. Since in such a process particles interact (i.e.,
annihilate) only upon collision, efficient simulations can be
made with the use of the so-called event-driven dynamics
[9]. One of the difficulties in this technique is the search for
the time of the nearest collision. Most efficient algorithms to
locate such an event arrange data on the heap tree [10]. For
event-driven simulations for d>1 systems it is also essential
to include sectorization and search for a collision partner
only within a given sector and its nearest neighbors. Heap-
tree searching and sectorization were already used in the
event-driven dynamics of various hard-core or granular sys-
tems [11-13] but to our knowledge not in the ballistic anni-
hilation. Since it substantially improves the numerical perfor-
mance, our method implements these techniques. The fact
that at the collision particles annihilate simplifies the algo-
rithm comparing to the nonannihilating systems. This is be-
cause there is no need to examine post-collision events of
colliding particles. In the following we discuss obtained nu-
merical results.
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FIG. 1. The exponent ¢ as a function of ¢ for N= 10°, 5% 10°,
107, 2 107, and 3 X 107 (thick line). Initially, velocities have a
Gaussian distribution (u=0).
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FIG. 2. The exponent 7y as a function of ¢ for N= 106, 5% 109,
107, 2% 107, and 3% 107 (thick line). Initially, velocities have a
Gaussian distribution (u=0).

In the d=1 case we place N pointlike particles on a line
interval of length L=N. Such a choice keeps the initial den-
sity of particles, n=N/L, constant (and equal to unity) and
that will allow us the comparison of results for different val-
ues of N. Initially velocities have a distribution f(v,7=0) that
either will be Gaussian or it will have a v=0 singularity
f(v,t=0)~ |v|™* with a characteristic exponent u. Periodic
boundary conditions are used. We measured the density of
particles n(z) at time ¢ and their typical velocity v(r) defined
using Eq. (1). To estimate the exponents & and 7y the system
must reach the asymptotic regime. However, for finite N the
long-time behavior is affected by poor statistics as well as by
finite-size effects and that hinders a precise determination of
¢ and vy. To take these effects into account we calculated
time-dependent exponents &(r) and y(r) using results [i.e.,
n(t) and v(r)] spreading over one decade around a given
value of .

For the Gaussian initial velocity distribution our results
are shown in Figs. 1 and 2. Presented values are averages
over 3% 10* (for N=3X107) to 10° (for N=10°) samples.
Although examined systems were rather large (N,,,,=3
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FIG. 3. The time dependence of the exponent ' that describes
the decay of the typical velocity defined via the fourth moment.
Calculations were made for N=10°, 5 10°, 107, 2X 107, and 3
X 107 (thick line). Initially, velocities have a Gaussian distribution

(1=0).
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FIG. 4. The exponent ¢ as a function of ¢ for N= 109, 3 X 10°,
and 107 (thick line). Initially, velocities have a distribution with u
=1/2 singularity.

X 107), it is still difficult to make a precise evaluation of
exponents. Our results £€=0.805(2) and y=0.195(2) satisfy
Eq. (3), but we admit that the estimation of errors is based
mainly on the visual inspection of data and the hope that a
further increase of the system size will not change much the
final estimations. Although the difference is very small, such
a value of & seems to exclude the possibility £=0.8 obtained
(exactly) for the d=1 annihilation process in the reaction-
controlled limit. Our estimation of ¢ also slightly differs
from a previous molecular dynamics simulations result of
0.785(5) made by Rey er al. [15] albeit with a much smaller
number of particles (they simulated systems with up to
262 144 particles). Let us notice that computing time in the
search algorithm of Rey et al. increases as O(N>*In(N))
while for the heap tree search (which we used) it increases
only as O(N In(N)). Various computations based on the so-
lution of the Boltzmann equation, and thus based on the mo-
lecular chaos hypothesis, predict £ close to 0.77 [3,7]. Dis-
agreement between this result and our estimation shows that
in d=1 Boltzmann kinetic theory has only limited validity.
To check for a possible multiscaling we calculated the
typical velocity v’(z) using the fourth-moment analog of Eq.
(1). Figure 3 shows the exponent 7' that describes the decay
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FIG. 5. The exponent 7y as a function of ¢ for N=10%, 3 X 10°,
and 107 (thick line). Initially, velocities have a distribution with u
=1/2 singularity.
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FIG. 6. The exponent ¢ as a function of ¢ for N=3007%, 5007,

10002, 20002, and 30007 (thick line). Initially, velocities have a
Gaussian distribution (u=0).

of v'(¢). Within our numerical precision y=1v" and thus v(z)
as defined in Eq. (1) is the only characteristic velocity in this
problem.

We also performed calculations for the singular initial ve-
locity distribution with u=1/2. In this case we estimate (see
Figs. 4 and 5) £=0.585(2) and y=0.415(2). This result sat-
isfies Eq. (3) and improves over previous estimations of &
reported in the literature that range from 0.5 to 0.6 [2,3,14].

In the one-dimensional case topological constraints imply
that for a given particle potential partners for a collision are
only two of its nearest neighbors. In two dimensions this is
no longer the case and in principle any pair of particles can
collide. For large N it leads to a prohibitively large number
of potential collisions that should be examined but only very
few of them will actually take place. To overcome this diffi-
culty one can divide available space into sectors and look for
potential collisions only within a sector or neighboring sec-
tors. More details on this technique can be found elsewhere
[11,13].

For the Gaussian initial velocity distribution the results of
our simulations are shown in Figs. 6 and 7. In two dimen-
sions the size of particles r relative to the linear system size
L becomes a relevant variable that might affect, e.g., the time
needed to reach asymptotic regime. The presented results are
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FIG. 7. The exponent v as a function of ¢ for N=300%, 5002,
10002, and 30007 (thick line). Initially, velocities have a Gaussian
distribution (u=0).
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FIG. 8. The exponent ¢ as a function of ¢ for N=300%, 5007,
10007, 2000%, and 3000% (thick line). Initially, velocities have a
distribution with a u=1/2 singularity.

obtained for the packing fraction f=mr’N/L?>=0.0079 but
similar results were obtained for f=0.031. After averaging
over 10°-10* samples, we estimate £=0.872(2) and 7y
=0.129(2). Such results satisfy Eq. (3) and are in a very good
agreement with calculations based on the Boltzmann equa-
tion [3,5], confirming thus the validity of the molecular
chaos hypothesis in this case. Let us notice that our estima-
tion of ¢ definitely excludes the reaction-controlled value &
=8/9. Moreover, the maximal number of particles examined
in our approach (9 X 10%) is almost 20 times larger than that
for previously reported d=2 event-driven simulations [5].

We also made calculations for the w=1/2 case and the
results are presented in Figs. 8 and 9. We estimate &
=0.83(1) and y=0.17(1). A similar value of & was recently
obtained using numerical integration of the Boltzmann equa-
tion [3]. In Table I we collect all our final results.

In conclusion, implementing a heap-tree search algorithm
and sectorization we made extensive event-driven molecular
dynamics simulations of the ballistic annihilation. The ob-
tained estimations of the decay exponents & and y obey the
scaling relation £+ =1 and improve previously reported re-
sults. Our calculations suggest that the typical velocity as
defined via the second moment sets the only characteristic
scale in the problem. Very good agreement of our simula-
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FIG. 9. The exponent y as a function of ¢ for N=5002, 10002,

20002, and 30007 (thick line). Initially, velocities have a distribution
with a u=1/2 singularity.
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TABLE 1. Exponents ¢ and 7 as calculated in the present paper.
Estimations of & based on the analysis of the Boltzmann equation
[3,14] and in the reaction-controlled limit [4], are presented in the
last three columns.

d Iz 3 Y §[14] &[4 £[3]

1 0 0.805(2)  0.195(2) 0.666 0.8 0.769
172 0.585(2) 0.415(2) 0.5 0.6

2 0 0.872(2)  0.129(2) 0.8 0.75 0.87
172 0.83(1) 0.17(1) 0.75 0.84
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tions with the predictions of Boltzmann kinetic theories in
the d=2 case confirms the validity of the latter approach. In
the d=1 case small differences between the results of these
two approaches exist. It would be interesting to extend our
approach to some other model phenomena whose kinetics is
still not fully understood such as, e.g., ballistic aggregation
[4,16] or probabilistic ballistic annihilation [17].
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